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Day 1

Motivational problems

Let R = 𝕜[x1, … ,xn] be a polynomial ring over a field 𝕜. Let I = ⟨f1, … , fr⟩ ⊆ R be an ideal. We are interested in
the following problems.

Let V(I) denote the vanishing locus of I in the affine space An
𝕜
. Knowing that f ∈ I tells us that f vanishes on all

points of V(I). Checking ideal equality is useful when the same ideal is given two different generating sets. Also,
I = J implies the equality of vanishing loci V(I) = V(J) (the converse is false).

For example, the classes in the quotient ring Z/⟨m⟩ can be represented by the integers 0, … ,m − 1.
Geometrically, a polynomial f ∈ R determines a polynomial function V(I) → 𝕜. When f + I = g + I, the
polynomials f and g determine the same function on V(I). Finding bases of R/I allows us to use linear algebra to
study geometric properties of V(I) such as dimension and degree.
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Ideal membership and equality

Given f ∈ R, determine if f ∈ I.

If f ∈ I, find q1, … , qr ∈ R such that f = ∑r
i=1 qifi.

Given an ideal J of R, determine if I = J.

Quotient representations

Given f ∈ R, how should we represent the coset f + I in the quotient ring R/I?

Given f, g ∈ R, determine if f + I = g + I.

Find a basis of R/I as a 𝕜-vector space.
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Univariate case

Before tackling these problems in full generality, it useful to focus on the one variable case 𝕜[x]. In this case, we
can use the fact that 𝕜[x] is a Euclidean domain.

Here deg(g) denotes the largest power of the variable x appearing in g with a nonzero coefficient. In other words, if
deg(g) = d, then

g =
d

∑
i=1

cix
i

with cd ≠ 0. We call cdxd the leading or initial term of g and we call cd the leading coefficient.

The long division algorithm gives an effective way to construct q and r given f and g. From here, we can solve the
problems above. For example, letting I = ⟨g⟩, we have:

Monomial orderings

The first thing we do when dividing f by g is line out their terms from highest to lowest degree. A multivariate
division algorithm would require a similar step, but how should we order terms of a polynomial in two or more
variables?

A monomial in R = 𝕜[x1, … ,xn] is an element of the form xa = xa1

1 xa2

2 ⋯xan
n  with a = (a1, a2, … , an) ∈ Nn (note:

0 ∈ N). We set |a| = a1 + a2 + ⋯ + an, so deg(xa) = |a|. Some sources say term instead of monomial; other
sources use the word term for polynomials cm where 0 ≠ c ∈ 𝕜 and m is a monomial.

Here are a few notable monomial orderings.

Theorem

For every f, g ∈ 𝕜[x] with g ≠ 0, there exist unique q, r ∈ 𝕜[x] (called quotient and remainder, respectively)
such that f = qg + r and r = 0 or deg(r) < deg(g).

f ∈ I if and only if r = 0;

if f ∈ I, then f = qg where the unique q can be found explicitly;

f + I = r + I, so we can choose the remainder as the standard representative modulo I;

assuming deg(g) = d, the elements 1 + I,x + I,x2 + I, … ,xd−1 + I form a 𝕜-basis of 𝕜[x]/I.

Definition

A monomial ordering on the polynomial ring R = 𝕜[x1, … ,xn] is an order (meaning reflexive, antisymmetric,
and transitive) relation < on the set of monomials in R satisfying the following properties.

1. It is total: for all monomials m1 ≠ m2, we have m1 < m2 or m2 < m1.

2. It is compatible with multiplication: for all monomials m1,m2,m3, if m1 < m2, then m1m3 < m2m3.

3. Has 1 as its minimum: for all monomials m ≠ 1, we have 1 < m.



Here is the same polynomial written from largest to smallest term in the orders above.

Although Lex and GLex seem a little more natural and have their applications, there are practical reasons for
working with GRevLex (which is the default in software like Macaulay2).

Fix a monomial ordering on R = 𝕜[x1, … ,xn] and let f ∈ R.

The words monomial and term are some times interchanged in the literature; also, some sources refer to leading
terms/monomials as initial or head terms/monomials.

Multivariate division

Example: Lexicographic Order (Lex)

We write xa >Lex xb in the lexicographic order if the first nonzero entry of the vector a − b is positive. When
we use different letters such as x, y, z for variables, the lexicographic order is simply the alphabetical order,
so x > y > z. However, as a result, the lexicographic order ignores degrees, so you end up with x > y100.

Example: Graded Lexicographic Order (GLex)

We write xa >GLex xb in the graded lexicographic order if |a| > |b|, or |a| = |b| and xa >Lex xb. Thus, the
graded lexicographic order prioritizes degree, and then uses the lexicographic order to break ties.

Example: Graded Reverse Lexicographic Order (GRevLex)

We write xa >GRevLex xb in the graded reverse lexicographic order if |a| > |b|, or |a| = |b| and the rightmost
nonzero entry of the vector a − b is negative. The name is related to the fact that on monomials of the same
degree this is the reverse of the (graded) lexicographic order if the order of the variables is reversed.

Using Lex: x4 + x3y2z4 + xy5z3

Using GLex: x3y2z4 + xy5z3 + x4

Using GRevLex: xy5z3 + x3y2z4 + x4

The largest monomial appearing with a nonzero coefficient in a polynomial f is called its leading monomial; we
denote it LM(f).

The coefficient of the leading monomial is called the leading coefficient of f; we denote it LC(f).

The product of the leading coefficient and the leading monomial gives the leading term of f; we denote it
LT(f), so we have LT(f) = LC(f) ⋅ LM(f).

Theorem

Consider an ordered collection of polynomials F = (f1, … , fs) ∈ Rs where R = 𝕜[x1, … ,xn] and fix a
monomial ordering on R. For every f ∈ R, there exist q1, … , qs, r ∈ R such that f = ∑s

i=1 qifi + r, and r = 0

or r is a 𝕜-linear combination of monomials none of which are divisible by any of LM(f1), … , LM(fs).



The element r is known as the normal form of f upon division by F .

For example, suppose we want to divide f = x2y2 − y3 by f1 = y2 − x and f2 = xy − 1 in GLex. We can write out
the division algorithm using the format of long division. We highlight terms added to r.

x
2
¡y

¡1

y
2
¡x x

2
y
2
¡y

3

xy ¡1 x
2
y
2
¡x

3

x
3
¡y

3

¡y
3

¡y
3
+xy

¡xy

¡xy +1

¡1

0

Therefore, we get q1 = x2 − y, q2 = −1, and r = x3 − 1. However, notice what happens if we swap f1 and f2.
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In this case, we get q1 = xy, q2 = −y, and r = 0; it follows that f = xyf2 − yf1 ∈ ⟨f1, f2⟩. This shows the remainder
is not uniquely determined, so it cannot be used to test ideal membership. As it turns out, the fault for this behavior
is not in the remainder or in the algorithm, but in the tuple F  we are dividing by.

Gröbner bases

We adopt the following working definition. We will later provide equivalent characterizations.

Division algorithm

To construct q1, … , qs and r, we initially set them equal to 0, then proceed as follows.

1. Find the smallest i such that LM(fi) divides LM(f), if any, then go to step 2; otherwise, go to step 3.

2. Replace qi by qi + LT(f)/ LT(fi) and f by f − (LT(f)/ LT(fi))fi, then go to step 4.

3. Replace r by r + LT(f) and f by f − LT(f), then go to step 4.

4. If f = 0, then stop and return q1, … , qs, r; otherwise, go back to step 1.

Definition

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. A tuple G = (g1, … , gs) ∈ Rs of nonzero elements is
a Gröbner basis if for every f ∈ R there is a unique r ∈ R with the following properties:

f = ∑s
i=1 qigi + r for some q1, … , qs ∈ R;

r = 0 or no term of r is divisible by any of LM(g1), … , LM(gs).



The r in this definition can be computed using the division algorithm. Since R contains infinitely many elements,
the definition above is hard to use in practice, so we need a different way to recognize a Gröbner basis.

The S-polynomial S(f, g) is designed to produce a cancellation of leading terms. Notice also that S(f, g) ∈ ⟨f, g⟩.

For example, consider the polynomials f1 = y2 − x and f2 = xy − 1 in GLex. We have
lcm(LM(f1), LM(f2)) = lcm(y2,xy) = xy2. Therefore, the S-polynomial of f1, f2 is

S(f1, f2) =
xy2

y2
(y2 − x) −

xy2

xy
(xy − 1) = xy2 − x2 − xy2 + y = −x2 + y.

The previous computation shows that F = (f1, f2) is not a Gröbner basis because the remainder of S(f1, f2) upon
division by F  is nonzero. However, if we let f3 = S(f1, f2), we can use Buchberger's criterion to show that
G = (f1, f2, f3) is a Gröbner basis of ⟨f1, f2⟩.

Finding Gröbner bases

Now the question is: does every ideal I ⊆ R = 𝕜[x1, … ,xn] admit a Gröbner basis? The answer is yes! In fact, a
Gröbner basis of an ideal can be constructed using a procedure due to Bruno Buchberger.

Buchberger's Criterion ensures that this algorithm returns a Gröbner basis. Of course, one should still prove that
this algorithm terminates in a finite number of steps. The algorithm above is designed to be simple but is not very
efficient; however, one can introduce several optimizations. In addition, there are other algorithms that can be
used to compute Gröbner bases (Hilbert drives, Faugère's F4, signature-based) and algorithms that convert

If I = ⟨g1, … , gs⟩ is the ideal generated by the elements in G, we call G a Gröbner basis of I.

Definition

Consider nonzero polynomials f, g ∈ R = 𝕜[x1, … ,xn]. The S-polynomial of f and g is

S(f, g) =
lcm(LM(f), LM(g))

LT(f)
f −

lcm(LM(f), LM(g))

LT(g)
g

where lcm denotes the least common multiple.

Theorem (Buchberger's Criterion)

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. A tuple G = (g1, … , gs) ∈ Rs of nonzero elements is
a Gröbner basis if and only if for all i ≠ j the remainder of S(gi, gj) upon division by G is zero.

Buchberger's Algorithm

To construct a Gröbner basis of I = ⟨f1, … , fs⟩, set G = (f1, … , fs) and proceed as follows.

1. For each pair {p, q} in G with p ≠ q, compute the remainder of S(p, q) upon division by G. Go to step 2.

2. If all remainders computed in step 1 are zero, stop and return G; otherwise, add all nonzero remainders
to G and go back to step 1.



Gröbner bases between different monomial orders (FGLM, Gröbner walk). There are also algorithms that will
compute Gröbner bases of special families of ideals, such as the Buchberger-Möller algorithm for ideals of points.

Special generation

We conclude this discussion with another property that characterizes Gröbner bases. This property will be
analyzed further on Day 3.

Consider again the polynomials f1 = y2 − x and f2 = xy − 1 in GLex. We observed that

f = −x2 + y = xf1 − yf2 ∈ ⟨f1, f2⟩.

One would hope that LM(f) is equal to either LM(xf1) or LM(yf2). However, we have LM(f) = x2 and
LM(xf1) = LM(yf2) = xy2; in fact, f = S(f1, f2) so it is designed to produce a cancellation of leading terms. This
cannot occur with a Gröbner basis.

Thus, a Gröbner basis of an ideal I can be seen as special set of generators that satisfies the property in the
theorem.

Day 1 problems

Problems 1, 3, 9, 11, 12, and 13 are easier to start with. Everyone should try at least one of the problems that ask
to compute a Gröbner basis (11, 12, and 13 are more hands-on; 14 and 15 are a bit more abstract). Problem 4 is
also strongly recommended as the results will be used on Day 2.

Problem 1

Show that there is only one monomial order on 𝕜[x].

Problem 2

For more on the classification of monomial orderings for a small number of variables see Tutorial 10 in Kreuzer,
Robbiano.

Problem 3

Write in increasing order the 20 smallest monomials in 𝕜[x, y, z] equipped with Lex. Do the same for GLex and
GRevLex.

Theorem

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. A tuple G = (g1, … , gs) ∈ Rs of nonzero elements is
a Gröbner basis if and only if for every nonzero f ∈ ⟨G⟩ there exist q1, … , qs ∈ R such that f = ∑

s
i=1 qigi and

LM(f) = max{LM(qigi) | i ∈ {1, … , s}, qigi ≠ 0}

where the maximum is taken with respect to the chosen monomial ordering.

We say a monomial ordering ⩾ is degree compatible if xa ⩾ xb implies deg(xa) ⩾ deg(xb). For example, GLex
and GRevLex are degree compatible by definition. Show that there are exactly two degree compatible
monomial orderings on 𝕜[x, y].

Show that there is only one monomial ordering on 𝕜[x, y] such that x > yi for all i ⩾ 2.



Problem 4

Let u = (u1, … ,un) ∈ Nn and fix a monomial ordering > on 𝕜[x1, … ,xn]. Given monomials xa and xb, define
xa >u xb if and only if:

We call >u the weight order determined by u and >.

Problem 5

Let M be an n × n nonsingular matrix with integer entries and denote M T  its transpose. Given monomials
xa,xb ∈ 𝕜[x1, … ,xn], define xa ⩾M xb if and only if xaM T

⩾ xbM n

 in Lex, where aM T  is the product of the row
vector a with the matrix M T  and similarly for bM T .

Problem 6

Let > be a total order compatible with multiplication on the set of monomials of 𝕜[x1, … ,xn] (see our definition of
monomial ordering). Recall that a well-ordering is a total order such that every nonempty subset contains a least
element. Show that > has the monomial 1 as its minimum element if and only if it is a well-ordering. [Hint: for the
⇒ implication, use Hilbert's Basis Theorem or Dickson's Lemma.]

Problem 7

Given monomials xa,xb ∈ 𝕜[x1, … ,xn], define xa ⩾ xb if and only if a = b or the rightmost nonzero entry of the
vector a − b is negative; we call this relation RevLex.

Problem 8

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R.

u ⋅ a > u ⋅ b (where ⋅ denotes the dot product of vectors), or

u ⋅ a = u ⋅ b and xa > xb (in the monomial ordering fixed at the beginning).

Show that >u is a monomial ordering.

Assume > is Lex and find u such that >u is GLex.

Consider a positive integer m ⩽ n and let u = (1, … , 1, 0, … , 0) with m 1's and n − m 0's. Let > be GRevLex.
Show that >u has the following property: any monomial in x1, … ,xm is greater than all monomials in
𝕜[xm+1, … ,xn].

Prove that ⩾M  is a total order.

Prove that ⩾M  is a monomial order if and only if the first nonzero entry of each column of M is positive.

Find a matrix M such that ⩾M  is Lex. Do the same for GLex and GRexLex.

Show that RevLex is a total order compatible with multiplication.

Show that RevLex is not a monomial ordering.

Show that LM(fg) = LM(f) LM(g) for all nonzero f, g ∈ R.

Show that LM(f + g) ⩽ max{LM(f), LM(g)} for all nonzero f, g ∈ R such that f + g ≠ 0. Show that when
LM(f) ≠ LM(g) the equality is achieved.



Problem 9

This problem gives another example where the remainder of division depends on the order of the divisors.
Consider Q[x, y] with the Lex order. Let f = x5 − 1, g1 = −x2 + xy2 and g2 = x2y − y2.

Problem 10

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. Consider f, g ∈ R whose leading monomials are relatively
prime, meaning that lcm(LM(f), LM(g)) = LM(f) LM(g).

Problem 11

Consider R = Q[x, y] with the lexicographic ordering. Is the tuple F = (y2 − x,xy − 1) a Gröbner basis? If not, find
a Gröbner basis of the ideal ⟨F⟩.

Problem 12

For a little more practice with the Buchberger algorithm, compute a Gröbner basis of the ideal ⟨2z − x3, y − x2⟩ in
Q[x, y, z] with the GRevLex (or with Lex if you want to see a few more steps). What are some obvious ways to
improve upon the algorithm as outlined above?

Problem 13

Here is an example where the result changes with the characteristic of the field. Find a Gröbner basis of
⟨x2 + 1,x2y + x − y⟩ in 𝕜[x, y] with GRevLex, when 𝕜 = Q and when 𝕜 = Z/2.

Problem 14

Let A = (ai,j) be an m × n matrix with entries in 𝕜. Let

fi = ai,1x1 + ai,2x2 + ⋯ + ai,nxn

be the linear polynomial in 𝕜[x1, … ,xn] determined by the i-th row of A, and consider the ideal I = ⟨f1, … , fm⟩.
Let B be the reduced row echelon form of A and let g1, … , gt be the linear polynomials determined by the nonzero
rows of B (so t ⩽ n). Prove that {g1, … , gt} is a Gröbner basis of I.

Problem 15

A binomial in R = 𝕜[x1, … ,xn] is a polynomial of the form αxa − βxb for some nonzero α,β ∈ 𝕜 and some
exponent vectors a, b ∈ Nn. A binomial ideal in R is an ideal that has a generating set consisting entirely of
binomials.

Divide f by the tuple (g1, g2).

Divide f by the tuple (g2, g1).

Show that S(f, g) = pg − qf where p = f − LT(f) and q = g − LT(g).

Show that LM(S(f, g)) = max{LM(pg), LM(qf)}.

Deduce that the remainder of S(f, g) upon division by the pair (f, g) is zero.

Show that the S-polynomial of two binomials is a binomial.

Show that the remainder of a binomial upon division by a tuple of binomials is a binomial.

Deduce that a binomial ideal has a Gröbner basis consisting entirely of binomials.



Day 2

Reduced Gröbner bases

If you compute Gröbner bases by hand and compare with others or with a computer, you may obtain different
results.

Reduced Gröbner bases are important for the following reason.

If a Gröbner basis G of I is known, then it is easy to produce the reduced Gröbner basis of I by normalizing
coefficients and eliminating unnecessary terms. This gives us a new method to test ideal equality.

We also notice that (1) is the reduced Gröbner basis of the ideal ⟨1⟩ = 𝕜[x1, … ,xn] in any monomial ordering. The
vanishing locus in the affine space An

𝕜
 of the ideal ⟨1⟩ is clearly empty. Conversely, by the weak Nullstellensatz, if

𝕜 is algebraically closed and I ⊆ 𝕜[x1, … ,xn] is an ideal such that V(I) = ∅, then I = ⟨1⟩. This leads to the
following criterion which allows us to check when a system of polynomial equations has a solution.

It is not possible to work computationally over an algebraically closed field. However, the construction of a
Gröbner basis as described in Buchberger's Algorithm can be carried out over a subfield that can be represented
in a computer algebra system.

Definition

A Gröbner basis G is called reduced if for all g in G:

1. LC(g) = 1;

2. no monomial of g is divisible by the leading term of any other element of G.

Theorem

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. Every nonzero ideal I in R has a unique reduced
Gröbner basis.

Corollary

Two ideals I,J in R are equal if and only if they have the same reduced Gröbner basis for some (hence any)
monomial ordering.

Corollary

Let I be an ideal in 𝕜[x1, … ,xn] with 𝕜 algebraically closed. Then V(I) = ∅ if and only if the reduced
Gröbner basis of I in one (hence any) monomial ordering is (1).



Solving systems of equations

Gröbner bases may help solve systems of polynomial equations. Consider the following example, which describes
the intersection of a sphere, a hyperboloid, and a plane.

In Macaulay2, we set up a ring R = Q[x, y, z] with the lexicographic order and define the ideal

I = ⟨x2 + y2 + (z − 1)2 − 2,x2 + y2 − z2 − 1,x − y⟩

with generators corresponding to the equations of the system.

Observe how M2 expands all operations and arranges monomials according to the chosen ordering. Next, we
compute a Gröbner basis using Macaulay2.

The gb  command runs the Gröbner basis computation, then we can use gens  to display the result as a one-row
matrix. Notice that the leading terms of the elements in the Gröbner basis are arranged in increasing order:
z2 < 2y2 < x. Because we chose to use Lex and the smallest leading term is a power of the smallest variable z, it
follows that the other terms in the first polynomial must be smaller than z2 and, therefore, they cannot involve
other variables. Thus, we get an equivalent system

where the first equation is univariate. This system can be solved from top to bottom by finding roots of one

⎧⎪⎨⎪⎩x2 + y2 + (z − 1)2 = 2

x2 + y2 − z2 = 1
x = y

R=QQ[x,y,z,MonomialOrder=>Lex]

I=ideal(x^2+y^2+(z-1)^2-2, x^2+y^2-z^2-1, x-y)

G=gb I

gens G

⎧⎪⎨⎪⎩z2 − z = 0

2y2 − z − 1 = 0
x − y = 0



equation and substituting into the next. The solutions are the four points

(
1

√2
,

1

√2
, 0), (−

1

√2
, −

1

√2
, 0), (1, 1, 1), (−1, −1, 1).

In this particular example, the default ordering (GRevLex) also leads to a system with a univariate equation, but
that may not always be the case.

The Gröbner basis G  we obtained for the ideal I  is not reduced but only because of the coefficient in 2y2; this
choice allows M2 to avoid denominators over Q. We can check that the paraboloid z = x2 + y2 − 1 passes through
the four points by checking it belongs to I  or, equivalently, that its remainder modulo G  is zero.

To express the polynomial f  as a linear combination of G  we can compute the quotients of division as follows.

We can also express f  as a linear combination of the original generators of I .

Elimination

Gröbner bases can also be used to find implicit equations for varieties parametrized by rational functions. In other
words, we can use Gröbner bases to eliminate parameters. The stereographic projection from the north pole gives
the rational parametrization of the sphere

x =
2u

1 + u2 + v2
, y =

2v

1 + u2 + v2
, z =

−1 + u2 + v2

1 + u2 + v2
.

depending on two parameters u, v.

f=x^2+y^2-1-z

f%G

f//(gens G)

f//(gens I)



In Macaulay2, we set up a ring R = Q[u, v,x, y, z] and define the ideal

I = ⟨(1 + u2 + v2)x − 2u, (1 + u2 + v2)y − 2v, (1 + u2 + v2)z + 1 − u2 − v2⟩

with generators obtained by clearing denominators in the parametrization. We are formally interested in the so-
called elimination ideal I ∩ Q[x, y, z] in the subring Q[x, y, z]. We could take the Lex order with u > v > x > y > z.
Another option, which is typically more efficient, is to use a so-called elimination order designed to eliminate the
first two variables u, v.

Next, we compute a Gröbner basis and display its elements.

The elements of this Gröbner basis involving only x, y, z give us implicit equations for the sphere. To extract these
elements, we can use the command selectInSubring .

When we set up the ring with the elimination order, M2 creates two blocks of variables: u, v and x, y, z; the first
argument informs M2 that we want to eliminate the variables in the first block. Another way to obtain an elimination
ideal in M2 is to use the command eliminate .
Notice that our parametrization of the sphere misses the point (0, 0, 1), so it only covers a subset U  of the sphere
which is open in the Zariski topology. The elimination ideal vanishes on the closure of U  which is the whole
sphere.

The ideas illustrated in this example can be generalized as follows.

R=QQ[u,v,x,y,z,MonomialOrder=>Eliminate 2]

I=ideal((1+u^2+v^2)*x-2*u,

(1+u^2+v^2)*y-2*v,

(1+u^2+v^2)*z+1-u^2-v^2)

G=gb I

gens G

selectInSubring(1,gens G)

Definition

Given an ideal I in the polynomial ring 𝕜[x1, … ,xn], the m-th elimination ideal Im is the ideal of the subring
𝕜[xm+1, … ,xn] defined by Im = I ∩ 𝕜[xm+1, … ,xn].

Definition

A monomial ordering on 𝕜[x1, … ,xn] is of m-elimination type if every monomial involving one of x1, … ,xm is
greater than all monomials in 𝕜[xm+1, … ,xn].



With the definitions above, we have the following result.

Day 2 problems
Problem 16 is about reduced Gröbner bases and can be done by hand. The other problems showcase a variety of
applications of Gröbner bases in the spirit of the Day 2 notes; use of a computer algebra system like Macaulay2 is
highly recommended. Problem 21 is strongly recommended for anyone who has not seen it before.

Problem 16

If you found Gröbner bases by hand in problems 11 or 12, your results are likely not reduced. Find the reduced
Gröbner bases for the ideals in those problems.

Problem 17

Consider the following system of polynomial equations.

How many rational, real, and complex solutions does it have?

Problem 18

A finite graph is 3-colorable if every vertex can be assigned one of 3 different colors in such a way that vertices
connected by an edge have different colors. If w denotes a primitive cubic root of unity, then we can use the
complex numbers 1,w,w2 to represent 3 different colors. If we denote x1, … ,xn the vertices of our graph,
assigning a color to each vertex means that each variable xi must be assigned one of the values 1,w,w2. Then,
the equations

x3
i − 1 = 0

must be satisfied for all i ∈ {1, … ,n}. If xi and xj are connected by an edge, then xi ≠ xj. Given that x3
i = 1 = x3

j

and x3
i − x3

j = (xi − xj)(x2
i + xixj + x2

j), an equation of the form

x2
i + xixj + x2

j = 0

must be satisfied for each edge in the graph. It follows that the graph is 3-colorable if and only if V(I) ≠ ∅ where I
is the ideal of 𝕜[x1, … ,xn] generated by all the equations above. Now, we can use Gröbner bases to solve the
following.

Theorem

If I is an ideal in 𝕜[x1, … ,xn] and G is a Gröbner basis of I with respect to a monomial ordering of m-
elimination type, then G ∩ 𝕜[xm+1, … ,xn] is a Gröbner basis of the m-th elimination ideal
Im = I ∩ 𝕜[xm+1, … ,xn].

⎧⎪⎨⎪⎩x2 + y2 + z2 = 9

3x2 = y2z

x2z + 2 = 2y2

Show that K5, the complete graph on 5 vertices, is not 3-colorable.

Let G be the graph obtained from K5 by removing two non-incident edges. Show that G is 3-colorable.



To work over an extension of Q containing a primitive cubic root of unity, you can use the following Macaulay2
code. Note that x2 + x + 1 is the minimal polynomial of w.

Problem 19

Shidoku is a smaller relative of Sudoku. You play on the 4 × 4 grid

and you replace each letter with an integer from 1 to 4 in a way that every row, column, and 2 × 2 corner block
contains each of the number 1, 2, 3, and 4 exactly once. This problem shows how you can represent and solve
Shidoku puzzles using Gröbner bases.

For more information and for more ideas on how to represent Sudoku boards algebraically, consult the article
"Gröbner Basis Representations of Sudoku" by Elizabeth Arnold, Stephen Lucas, and Laura Taalman.

Problem 20

Consider the surface S in R3 formed by the union of all lines joining the points

(u2, −u3,u), (−u2,u3, 1 − u)

kk=toField( QQ[w] / ideal(w^2+w+1))

R=kk[x_1..x_5]

a b c d

e f g h

i j k l

m n o p

Each letter in the grid must satisfy an equation of the form

(w − 1)(w − 2)(w − 3)(w − 4) = 0

to ensure that it can only be equal to 1, 2, 3, or 4.

The only way to choose four numbers w,x, y, z from the set {1, 2, 3, 4} is for them to add up to 10 and multiply
to 24; in other words, they must satisfy the equations:

w + x + y + z − 10 = 0, wxyz − 24 = 0.

Form the ideal I in Q[a, … , p] generated by the conditions above for all variables and all choices of rows,
columns, and 2 × 2 corner blocks. Your ideal should have 40 generators. The ideal I represents all possible
Shidoku boards.

Now, consider a particular board; for example:

We can represent this board by adding new equations such as d = 4 and so on for all other values present on
the board. Let J be the ideal generated by the elements of I and these new equations.

4

4 2

3 1

1

Find a Gröbner basis of J to determine if the board above admits a unique solution. If so, use the Gröbner
basis to solve the puzzle.



for u ∈ R; this is an example of a ruled surface.

Problem 21

Consider the polynomial rings R = 𝕜[w,x, y, z] and S = 𝕜[s, t]. Consider the ring homomorphism φ:R → S defined
on the variables as follows:

φ(w) = s3, φ(x) = s2t, φ(y) = st2, φ(z) = t3.

The kernel of φ is the vanishing ideal of the twisted cubic in P3, an object of interest to geometers. The
homomorphism φ corresponds to a parametrization of the twisted cubic, so we can use elimination to compute
this kernel. Define the ideal

I = ⟨w − s3,x − s2t, y − st2, z − t3⟩

in 𝕜[s, t,w,x, y, z].

Problem 22

The trigonometric parametrization

describes a torus in R3. We show this torus lies in an affine variety by eliminating the parameters t and u to
produce a polynomial equation. The trigonometric functions prevent us from using elimination directly, so set

a = cos(t), b = sin(t), c = cos(u), d = sin(u)

to replace the parametrization above with an algebraic one. However, these new variables are not independent as
they must satisfy a2 + b2 = 1 and c2 + d2 = 1. Now, form an ideal I in Q[a, b, c, d,x, y, z] generated by the
parametrization and the relations among the new variables. Finally, use elimination to find the equation for the
torus.

Problem 23

You may remember when a quadratic equation has a double root, but what about a cubic equation? Consider the
polynomial p(x) = ax3 + bx2 + cx + d for some a, b, c, d ∈ 𝕜, where 𝕜 is a field of characteristic not equal to 2 or 3,
and a ≠ 0. Recall that x0 is a double root of p(x) if and only if (x − x0)2 divides p(x).

Write a parametrization of S.

Use elimination to find a polynomial f ∈ R[x, y, z] such that S is contained in the set of points satisfying the
implicit equation f = 0.

Show that kerφ = I ∩ R.

Use Gröbner bases to find generators of kerφ.

⎧⎪⎨⎪⎩x = (2 + cos(t)) cos(u)
y = (2 + cos(t)) sin(u)
z = sin(t)

Show that x0 is a double root of p(x) if and only if p(x0) = 0 and dp
dx

(x0) = 0.

Consider the ideal I = ⟨p,
dp

dx
⟩ of 𝕜[x, a, b, c]. Find I ∩ 𝕜[a, b, c, d] and use it to determine when p has a double

root in terms of a, b, c, d.

Similarly, find conditions on a, b, c, d guaranteeing p(x) has a triple root.



Problem 24

Consider the polynomial

f(x, y) = y2 − (x3 + ax + b),

where a, b ∈ 𝕜 and 𝕜 is a field of characteristic not equal to 2 or 3. The points (x, y) ∈ 𝕜
2 that satisfy f(x, y) = 0

define a plane cubic curve. A point P = (x0, y0) on this curve is called singular if the tangent vector at P

(
∂f

∂x P

,
∂f

∂y P

)

is zero; we say the curve is smooth if it has no singular points. To determine when the curve has singular points
proceed as follows. Consider the ideal I = ⟨f,

∂f

∂x
,

∂f

∂y
⟩ of 𝕜[x, y, a, b], then eliminate x and y to find relations

between a, b. The plane cubic will be smooth, also known as an elliptic curve, when those relations are nonzero.

Problem 25

Fix a ∈ C. The minimal polynomial of a over Q is the monic polynomial p with rational coefficients of the smallest
degree such that p(a) = 0, where monic means it has leading coefficient is 1. For example, the minimal
polynomials of a = √2, b = 3√5, and i = √−1 are, in order, a2 − 2, b3 − 5, and i2 + 1. This problem shows how to
use elimination to find the minimal polynomial of a complex number living in a particular field extension of Q. For
example, consider

x =
b2 − i

a
=

3√25 − i

√2
∈ Q (√2, 3√5, i).

By clearing the denominator, we obtain the algebraic relation ax − b2 + i = 0. We take the ideal of Q[a, b, i,x]

generated by this relation and the minimal polynomials of a, b, and i:

I = ⟨ax − b2 + i, a2 − 2, b3 − 5, i2 + 1⟩.

Next, we use an elimination order to compute I ∩ Q[x]. Since this elimination ideal lives in Q[x], it can be
generated by a single monic polynomial, which is the minimal polynomial of x. Find this minimal polynomial.

Problem 26

A polynomial f ∈ 𝕜[x1, … ,xn] is called symmetric if

f(x1, … ,xn) = f(xσ(1), … ,xσ(n))

for every permutation σ of {1, … ,n}. We can use elimination orderings to identify symmetric polynomials as
follows. For 1 ⩽ k ⩽ n, we define the elementary symmetric polynomial of degree k as

ek = ∑
1⩽i1<⋯<ik⩽n

xi1 ⋯xik ;

in other words, ek is the sum of all squarefree monomials of degree k. In the ring R = 𝕜[x1, … ,xn, y1, … , yn] with
a monomial ordering of n-elimination type, let G be a Gröbner basis of the ideal I = ⟨e1 − y1, … , en − yn⟩. Given
f ∈ 𝕜[x1, … ,xn] ⊆ R, let g be the remainder upon division of f by G. Then:

∣ ∣
1. f is symmetric if and only if g ∈ 𝕜[y1, … , yn];

2. if f is symmetric, then f = g(e1, … , en) and this is the unique expression of f as a polynomial in e1, … , en.



Now, for i ⩾ 0, define the power sum symmetric polynomial

pi = xi
1 + ⋯ + xi

n

and the complete homogeneous symmetric polynomial

hi = ∑
a1+⋯+an=i

xa1
1 ⋯xan

n .

For n = 4, use the ideas above to verify that p1, … , p4 and h1, … ,h4 are symmetric, and express them as
polynomials in e1, … , e4.

Problem 27

Let I and J be ideals in 𝕜[x1, … ,xn].

Problem 28

Let I and J be ideals in R = 𝕜[x1, … ,xn]. The ideal quotient I : J, also known as a colon ideal, is defined as

I : J = {f ∈ R | ∀g ∈ J, fg ∈ I}.

Ideals quotients are useful when studying differences of algebraic sets.

Day 3

Leading terms

Recall that having fixed a monomial ordering on the polynomial ring R = 𝕜[x1, … ,xn], the largest monomial
appearing with a nonzero coefficient in a polynomial f is called its leading monomial; we denote it LM(f). The
coefficient of the leading monomial is called the leading coefficient of f; we denote it LC(f). The product of the two
gives the leading term of f; we denote it LT(f), so we have LT(f) = LC(f) ⋅ LM(f).

Show that (tI + (1 − t)J) ∩ 𝕜[x1, … ,xn] = I ∩ J. Here, tI is the ideal of 𝕜[t,x1, … ,xn] generated by
{tf1, … , tfr} where {f1, … , fr} is a set of generators of I; the ideal (1 − t)J is constructed similarly.

Use elimination to compute I ∩ J where I = ⟨x2y − z,xy + 1⟩ and I = ⟨x − y, z2 − x⟩ are ideals of 𝕜[x, y, z].

Show that I : J is an ideal of R.

Show that if J = ⟨g1, … , gs⟩, then

I : J =
s

⋂
i=1

I : ⟨gi⟩.

Show that if g ∈ R is nonzero, then

I : ⟨g⟩ =
1

g
(I ∩ ⟨g⟩).

Combine the previous observations to compute I : J for the ideals I = ⟨x(x + y)2, y⟩ and J = ⟨x2,x + y⟩ in
Q[x, y]. You can use Problem 27 to compute intersections or you can just use the Macaulay2 method
intersect .



The ideal of leading terms is, by construction, a monomial ideal of R, i.e., an ideal that has a generating set
consisting entirely of monomials. Although LT(I) is an infinite set, ⟨LT(I)⟩ admits a finite generating set
(consisting of monomials) by Hilbert's Basis Theorem. One can also show directly that a monomial ideal admits a
finite generating set; this result is known as Dickson's Lemma.

One would hope that if I = ⟨f1, … , fr⟩, then ⟨LT(I)⟩ = ⟨LT(f1), … , LT(fr)⟩; however, this is false in general. For
example, consider the polynomials f1 = y2 − x and f2 = xy − 1 in GLex. On Day 1, we showed that

−x2 + y = S(f1, f2) ∈ ⟨f1, f2⟩.

However, x2 ∉ ⟨y2,xy⟩.

Since it is an equivalent characterization, this is often taken as the definition of a Gröbner basis. As it turns out,
this characterization has many useful applications.

Quotient representations

We are finally able to solve our other motivational problems, namely how to represent and compare elements in
the quotients of a polynomial ring.

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. Let I in R be an ideal and let G = (g1, … , gs) be a
Gröbner basis of I. Given any polynomial f ∈ R, we can use the division algorithm to write f = ∑s

i=1 qigi + r,
where r is a 𝕜-linear combination of monomials not divisible by any of LM(g1), … , LM(gs). Since G is a Gröbner
basis of I, we have:

We can combine these observations into the following result.

Definition

Let I in R = 𝕜[x1, … ,xn] be a nonzero ideal and fix a monomial ordering on R. Denote LT(I) the set of
leading terms of nonzero elements of I. We call ⟨LT(I)⟩ the ideal of leading terms of I.

Theorem

Let I in R = 𝕜[x1, … ,xn] be a nonzero ideal and fix a monomial ordering on R. A tuple G = (g1, … , gs) ∈ Rs

is a Gröbner basis of I if and only if ⟨LT(I)⟩ = ⟨LT(g1), … , LT(gs)⟩.

I = ⟨g1, … , gr⟩ so f + I = r + I;

r is uniquely determined (it depends only on f, I, and the monomial ordering);

no term of r is divisible by any monomial in ⟨LT(I)⟩.

Theorem (Macaulay's Basis Theorem)

Let I in R = 𝕜[x1, … ,xn] be a nonzero ideal and fix a monomial ordering on R. The monomials of R not
belonging to ⟨LT(I)⟩ form a basis of R/I as a 𝕜-vector space. In particular, if G = (g1, … , gs) is a Gröbner
basis of I, then the monomials of R not divisible by any of LM(g1), … , LM(gs) form a basis of R/I as a 𝕜-
vector space.



The monomials of R not contained in ⟨LT(I)⟩ are sometimes called the standard monomials modulo I.

Hilbert functions and polynomials

Recall that a polynomial f ∈ R = 𝕜[x1, … ,xn] is called homogeneous of degree d if

f(tx1, … , txn) = tdf(x1, … ,xn)

for all t ∈ 𝕜 ∖ {0} or, equivalently, if all terms of f have degree d. For d ∈ N, denote Rd the 𝕜-vector subspace of R
spanned by all homogeneous polynomials of degree d, which we call the graded component of R of degree d. The
ring R admits a direct sum decomposition

R = ⨁
d∈N

Rd

as a 𝕜-vector space. Moreover, multiplication respects this decomposition in the sense that for all f ∈ Rd, g ∈ Re

we have fg ∈ Rd+e. An ideal I of R is called homogeneous if it has a generating set consisting entirely of
homogeneous polynomials. For example, monomial ideals are homogeneous. For d ∈ N, let Id be the 𝕜-vector
subspace of I spanned by all homogeneous polynomials of degree d in I, which we call the graded component of
I of degree d. A homogeneous ideal I admits a direct sum decomposition

I = ⨁
d∈N

Id

as a 𝕜-vector space. Moreover, multiplication is compatible with this decomposition in the sense that for all
f ∈ Id, g ∈ Re we have fg ∈ Id+e. When I is a homogeneous ideal, the quotient ring R/I inherits a grading

R/I = ⨁
d∈N

(R/I)d

by letting (R/I)d be the span of all cosets f + I with f ∈ Rd. As a 𝕜-vector space, we have (R/I)d = Rd/Id.
Quotients of a polynomial ring by a homogeneous ideal arise naturally as "coordinate rings" of projective varieties,
so we will focus on them for the rest of this section. An analogous discussion can be had in the nonhomogeneous
(i.e., affine) case.

As a simple example, observe that when I = {0} we have R/I ≅R and

HR(d) = dim𝕜Rd = (
n − 1 + d

d
).

Fixing a monomial ordering on R, we have a basis of (R/I)d consisting of all monomials of degree d not contained
in ⟨LT(I)⟩. This shows the dimension of (R/I)d is always finite and gives us a practical way to compute it.

For example, consider the homogeneous ideal

I = ⟨w2 + x2 + y2 + z2,w(x + y + z)⟩

in R = Q[w,x, y, z] with the GRevLex ordering. We can use the following Macaulay2 code to produce the ideal of
leading terms of I.

Definition

Let I be a homogeneous ideal of the polynomial ring R = 𝕜[x1, … ,xn]. The Hilbert function of R/I is the
function HR/I : N → N defined by HR/I(d) = dim𝕜(R/I)d, i.e., the dimension of the graded component of
degree d of R/I as a 𝕜-vector space.



As a result, we get that ⟨LT(I)⟩ = ⟨wx,w2,x3⟩. From here, we see that

HR/I(0) = 1, HR/I(1) = 4, HR/I(2) = 8

because all monomials of degree 0 and 1 survive in the quotient, but 2 of the 10 monomials of degree 2 are
congruent to zero. For larger d, the computation is a little more involved. For example, when d = 3 the monomials
not in ⟨wx,w2,x3⟩ are

wy2,wyz,wz2,xy2,xyz,xz2,x2y,x2z, y3, y2z, yz2, z3

so that HR/I(3) = 12. In fact, for d ⩾ 3 the monomials not in ⟨wx,w2,x3⟩ are:

Therefore, for d ⩾ 3 we have

HR/I(d) = d + d + (d − 1) + (d + 1) = 4d.

We can also use Macaulay2 to compute individual values of the Hilbert function and to get bases for the graded
components.

The behavior observed in this example generalizes.

The polynomial PR/I  is called the Hilbert polynomial of R/I and it carries useful information. If the leading term of
PR/I  is ctd, then

The dimension and the degree of R/I allow us to measure how big and complicated the vanishing locus of I is in
projective space. In the example above, we have dim(R/I) = 2 so the vanishing locus of I is a curve (the Krull
dimension of the coordinate ring is one more than the dimension of the projective variety); also, deg(R/I) = 4, so
this is a curve of degree 4. To compute the Hilbert polynomial in the format above using Macaulay2 you can use
the following code.

R=QQ[w,x,y,z]

I=ideal(w^2+x^2+y^2+z^2,w*(x+y+z))

leadTerm I

wyd−1,wyd−2z, … ,wyzd−2,wzd−1 (d monomials),

xyd−1,xyd−2z, … ,xyzd−2,xzd−1 (d monomials),

x2yd−2,x2yd−3z, … ,x2yzd−3,x2zd−2 (d − 1 monomials),

and yd, yd−1z, … , yzd−1, zd (d + 1 monomials).

Q=R/I

for i to 10 do print hilbertFunction(i,Q)

basis(2,Q)

Theorem

Let I be a homogeneous ideal in R = 𝕜[x1, … ,xn]. There is a polynomial PR/I(t) ∈ Q[t] such that for all d
sufficiently large we have HR/I(d) = PR/I(d).

dim(R/I) = 1 + d, where dim(R/I) denotes the Krull dimension of R/I;

deg(R/I) = cd!, where deg(R/I) denotes the degree or multiplicity of R/I.



The connection between the algebra and the geometry goes even deeper. Suppose I is a homogeneous ideal and
G = (g1, … , gs) is a Gröbner basis of I. For 1 ⩽ i ⩽ s, define polynomials

hi = gi − LT(gi)

obtained by removing the leading term from each gi, and let

Gi,t = LT(gi) + thi

where t is a parameter. Altogether, the polynomials Gi,t define a family of ideals

It = ⟨G1,t, … ,Gs,t⟩

depending on the parameter t. Note that I1 = I and I0 = ⟨LT(I)⟩. Our previous discussion allows us to observe
that dim𝕜(R/I1)d = dim𝕜(R/I0)d for all d ∈ N, so that R/I1 and R/I0 have the same Hilbert function and,
therefore, they have the same Hilbert polynomial, dimension and degree. In fact, the quotients R/It have the
same Hilbert function for all values of the parameter t. For t ≠ 0, the vanishing locus of It may look like some
deformation of the vanishing locus of I. However, for t = 0, I = I0 is a monomial ideal and its vanishing locus
reduces to a union of linear subspaces; this is typically different from the vanishing locus of I but it may be easier
to understand. The process of deforming the vanishing locus of I to that of I0 is sometimes referred to as a
Gröbner degeneration.

Syzygies

Finally, let us return to the division algorithm. We observed that when dividing by the terms of a Gröbner basis the
remainder is unique, in particular it does not depend on the order of the divisors. However, quotients are generally
not uniquely determined.

Consider the polynomials f1 = y2 − x, f2 = xy − 1, f3 = −x2 + y. As we observed on Day 1, (f1, f2, f3) is a
Gröbner basis. We have

where the first equality was obtained using the division algorithm and y is the remainder. Thus, we have at least
two different sets of coefficients (x, 0, −1) and (x − 1,x, y − 1) for f1, f2, f3 that could act as "quotients" upon
division of xy2 by (f1, f2, f3).

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. Consider a tuple F = (f1, … , fs) ∈ Rs of nonzero
elements. Given f, r ∈ R, suppose there are two different tuples (q1, … , qs), (~q1, … , ~qs) ∈ Rs such that

f =
s

∑
i=1

qifi + r =
s

∑
i=1

~qifi + r.

Then, we have

s

∑
i=1

(qi − ~qi)fi = 0.

We can study the tuples (h1, … ,hs) ∈ Rs such that ∑s
i=1 hifi = 0 as a way to measure the failure of uniqueness

of the quotients upon division by F .

hilbertPolynomial(Q,Projective=>false)

xy2 = xf1 − f3 + y = (x − 1)f1 + xf2 + (y − 1)f3 + y,



The universally beloved word syzygy comes from the greek word for yoke. It is used in astronomy to describe an
alignment of celestial objects. It is also the name of a few music bands and the title of several short films, TV show
and podcast episodes, including an episode of the 90's cult TV show The X-Files.

The set Syz(F) is closed under sums and multiplication by elements of R; in other words, Syz(F) is a submodule
of Rs. If we let

ei = (0, … , 0, 1
i-th position

, 0, … , 0) ∈ Rs,

then we can write

(h1, … ,hs) =
s

∑
i=1

hiei.

For all choices of indices 1 ⩽ i < j ⩽ s, we have

fjei − fiej ∈ Syz(F).

Are there other syzygies and, if so, can we find them all? Since R is Noetherian and Rs is a finitely generated R-
module, the submodule Syz(F) is also finitely generated. Thus, to describe all syzygies it is enough to find a finite
generating set.

Going back to our example, we know that f3 is the S-polynomial of f1 and f2:

S(f1, f2) =
xy2

y2
(y2 − x) −

xy2

xy
(xy − 1) = −x2 + y = f3,

where xy2 is the least common multiple of the leading monomials of f1 and f2. We know that the S-polynomial is
designed to cancel the leading terms of its arguments, a fact which we can write as follows.

S(LT(f1), LT(f2)) =
xy2

y2
y2 −

xy2

xy
xy = x(y2) − y(xy) = 0

If we let LT(F) = (LT(f1), LT(f2), LT(f3)), the above equality can be reintepreted using the language of syzygies:
(x, −y, 0) ∈ Syz(LT(F)).

As observed in our example, S-polynomials give rise to syzygies of leading terms. In fact, every syzygy among
leading terms arises as an R-linear combination of these.

Definition

Let R = 𝕜[x1, … ,xn] and consider a tuple F = (f1, … , fs) ∈ Rs of nonzero elements. A tuple
H = (h1, … ,hs) ∈ Rs such that

s

∑
i=1

hifi = 0

is called a syzygy of F . We denote Syz(F) the set of all syzygies of F .



https://musicbrainz.org/search?query=Syzygy&type=artist
https://www.imdb.com/find/?q=syzygy
https://www.imdb.com/find/?q=syzygy
https://www.imdb.com/title/tt0751212/


In our ongoing example, we have:

σ12 = (x, −y, 0), σ13 = (x2, 0, y2), σ23 = (0,x, y).

Notice that σ13 = xσ12 + yσ23, so σ13 is a redundant generator. We can also see that σ13 is related to one of the
"obvious" syzygies of F :

τ13 = −f3e1 + f1e3 = (x2 − y, 0, y2 − x) = σ13 − (y, 0,x).

The tuple (y, 0,x) happens to contain the quotients of division of S(f1, f3) upon division by F :

S(f1, f3) = −x3 + y3 = y ⋅ f1 + 0 ⋅ f2 + x ⋅ f3.

In this case, we say that σ13 "lifts" to a syzygy of F . Replicating these steps with σ12 and σ23, we get the quotient
tuples

so σ12 and σ23 lift to the following syzygies of F :

Here is the crucial observation: in order to write every S-polynomial S(fi, fj) as a linear combination of F  we want
the remainder of S(fi, fj) upon division by F  to be zero; in other words, we want F  to be a Gröbner basis!

We can formalize the process for finding generators of Syz(G) in the following algorithm.

Theorem

Let R = 𝕜[x1, … ,xn] and consider a tuple F = (f1, … , fs) ∈ Rs of nonzero elements. Fix a monomial
ordering on R and write LT(F) for the tuple (LT(f1), … , LT(fs)) ∈ Rs. The elements

σij =
lcm(LM(fi), LM(fj))

LT(fi)
ei −

lcm(LM(fi), LM(fj))

LT(fj)
ej

for 1 ⩽ i < j ⩽ s generate the submodule Syz(LT(F)) of Rs.

S(f1, f2) = −x2 + y = 0 ⋅ f1 + 0 ⋅ f2 + 1 ⋅ f3 ↭ (0, 0, 1),

S(f2, f3) = y2 − x = 1 ⋅ f1 + 0 ⋅ f2 + 0 ⋅ f3 ↭ (1, 0, 0),

τ12 = (x, −y, 0) − (0, 0, 1) = (x, −y, −1),

τ23 = (0,x, y) − (1, 0, 0) = (−1,x, y).

Theorem

Let R = 𝕜[x1, … ,xn] and fix a monomial ordering on R. A tuple G = (g1, … , gs) ∈ Rs of nonzero elements is
a Gröbner basis if and only if every homogeneous element of Syz(LT(G)) lifts to an element of Syz(G). In
this case, if σ1, … ,σm are homogeneous elements generating Syz(LT(G)), then their lifts τ1, … , τm generate
Syz(G).



Macaulay2 can find syzygies using the command syz .

Day 3 problems
Problem 29

Consider the ideal in Problem 12.

Problem 30

Consider the ideal of R = Q[x, y, z] generated by the equations in Problem 17. Fix a monomial ordering on R.

Lifting syzygies

To find a generating set of Syz(G) where G = (g1, … , gs) is a Gröbner basis, proceed as follows.

1. For all indices 1 ⩽ i < j ⩽ s, compute

σij =
lcm(LM(gi), LM(gj))

LT(gi)
ei −

lcm(LM(gi), LM(gj))

LT(gj)
ej.

2. For all indices 1 ⩽ i < j ⩽ s, find (cij1, … , cijs) ∈ Rs such that

S(gi, gj) =
s

∑
k=1

cijkgk.

3. For all indices 1 ⩽ i < j ⩽ s, compute

τij = σij −
s

∑
k=1

cijkek.

4. Return the set {τij | 1 ⩽ i < j ⩽ s}.

R=QQ[x,y,MonomialOrder=>GLex]

I=ideal(y^2-x,x*y-1)

--syzygies of the leading terms

LTG=leadTerm I

syz LTG

--syzygies of the Gröbner basis

G=gens gb I

syz G

Find the initial ideal with respect to GRevLex.

Find the initial ideal with respect to Lex.

Find a basis of R/I as a 𝕜-vector space and show it is finite dimensional.

If you previously solved Problem 17, how does the dimension of R/I relate to the total number of solutions of
the system?



Problem 31

Let R = C[x, y, z] and

I = ⟨y2z − yz2,xyz,x2z − xz2,x2y − xy2⟩.

Problem 32

Let R = 𝕜[w,x, y, z] and let J be the defining ideal of the twisted cubic in P3 that you constructed in Problem 21.

Problem 33

This problem is about studying a non-homogeneous ideal by making it homogeneous. We start with a brief review
of projective space.

The projective space Pn over the field 𝕜 is made up of points [x0 : x1 : ⋯ : xn] with at least one xi ≠ 0, and these
points are defined up to nonzero scalars, meaning that for every 0 ≠ λ ∈ 𝕜 we have

[x0 : x1 : ⋯ : xn] = [λx0 : λx1 : ⋯ : λxn].

A homogeneous polynomial f of degree d has the property that

f(λx0,λx1, … ,λxn) = λdf(x0,x1, … ,xn)

so the vanishing of a homogeneous polynomial at a point of Pn is well-defined. The affine space An over 𝕜
embeds embeds in Pn by sending (x1, … ,xn) to [1 : x1 : ⋯ : xn]. Now, if X ⊆ An is a variety, the smallest
subvariety of Pn that contains the image of X under this embedding is called the projective closure of X.

If X ⊆ An is the vanishing locus of an ideal I = ⟨f1, … , fr⟩ ⊆ 𝕜[x1, … ,xn], the first thing you might try to do is
multiply the terms in the generators fi by powers of the variable x0 so that the resulting polynomials f h

i  are
homogeneous (see the example below). The following exercises show that this approach can fail even in simple
situations.

Here is how we remedy the situation.

Verify that the generators of I form a Gröbner basis with respect to GRevLex.

Use the initial ideal of I to find the Hilbert polynomial of R/I.

Find the dimension and degree of R/I, then use them to give a geometric description of V(I) in P2.

Find a Gröbner basis G of J with respect to GRevLex.

Use G to find the initial ideal of J and, from there, the Hilbert polynomial of R/J.

Find the dimension of R/I to confirm that V(I) is a curve (remember the dimension of the ring is the
dimension of the projective variety plus one).

Find the degree of R/I to confirm that V(I) is a cubic.

Show that Syz(G) is generated by two linear syzygies.

Let I = ⟨f1, f2⟩ ⊆ C[x, y] where f1 = y2 − x and f2 = xy − 1. Show that the vanishing locus of I in A2 contains
exactly three points. We can denote these points (ai, bi) for i ∈ {1, 2, 3}.

When we homogenize f1 and f2 with respect to a new variable z, we get f h
1 = y2 − xz and f h

2 = xy − z2. Show
that the vanishing locus of the homogeneous ideal ⟨f h

1 , f h
2 ⟩ ⊆ C[x, y, z] in P2 contains [ai : bi : 1] for i ∈ {1, 2, 3},

and one additional point [a4 : b4 : 0].



The general theory says that if G = ⟨g1, … , gs⟩ is a Gröbner basis of an ideal I ⊆ 𝕜[x1, … ,xn] with respect to a
degree compatible monomial ordering, then the projective closure of V(I) in Pn is the vanishing locus of
I h = ⟨gh1 , … , ghs ⟩ ⊆ 𝕜[x0,x1, … ,xn].

Problem 34

This is a continuation of Problem 19 on Shidoku puzzles. Let I ⊆ Q[a, … , p] be the ideal representing all possible
Shidoku boards.

Problem 35

Let R = Q[w,x, y, z]. The tuple

G = (x2 + yz,wx + yz,w2 + yz,wyz − xyz) ∈ R4

is a Gröbner basis with respect to GRevLex.

Problem 36

This problem tries to clarify what it means to "lift" a syzygy.

Let R = 𝕜[x1, … ,xn] and consider a tuple G = (g1, … , gs) ∈ Rs of nonzero elements. Fix a monomial ordering on
R and write LT(G) for the tuple (LT(g1), … , LT(gs)) ∈ Rs. A tuple of terms (t1, … , ts) ∈ Rs is homogeneous of
degree a ∈ Nn relative to G if LM(gi) LM(ti) = xa for all i ∈ {1, … , s} such that ti ≠ 0.

Compute a Gröbner basis G of I with respect to a degree compatible monomial ordering such as GLex or
GRevLex.

If G = (g1, … , gs), then we form the ideal I h = ⟨gh1 , … , ghs ⟩ of C[x, y, z] generated by the homogenizations of
the elements in G with respect to z.

Show that the vanishing locus of I h in P2 contains only the points [ai : bi : 1] for i ∈ {1, 2, 3}.

Find I h using the method described in Problem 31. Macaulay2 has the homogenize  method that you can use
to homogenize a polynomial or an ideal with respect to a variable (you will need to work in a larger polynomial
ring that contains one extra variable).

Show that R/I h has dimension one. This tells you that the projective variety defined by I h has dimension zero
or, equivalently, that it is a finite set of points (whose coordinates are the entries of all the possible Shidoku
boards).

Find the degree of R/I h. This will tell you the number of points in the vanishing locus of I h, which is also the
total number of possible Shidoku boards.

Use similar methods to find the number of possible solutions for the following board.

4

2

3

1

Construct all the generators σij of Syz(LT(G)).

Remove all non-minimal σij (this will reduce computations in the next steps).

Find lifts τij of the minimal σij to construct a generating set of Syz(G).



Every element of Rs decomposes as a sum of homogeneous elements of possibly different degrees relative to G.

Given H ∈ Rs, we write H = ∑a∈Nn Ha with Ha homogeneous of degree a relative to G. We define the leading
form of H relative to G as LFG(H) = Hd where

xd = max{xa |Ha ≠ 0}

taken with respect to the monomial ordering.

Thus, the operator LFG defines a function from Rs to Rs that sends the submodule Syz(G) to Syz(LT(G)). Finally,
we say that H ∈ Rs is a lifting of H ∈ Rs if LFG(H) = H.

Not every element H ∈ Rs has a lifting. However, if G is a Gröbner basis and H is homogeneous, then H has a
lifting.

Show that for 1 ⩽ i < j ⩽ s the element

σij =
lcm(LM(gi), LM(gj))

LT(gi)
ei −

lcm(LM(gi), LM(gj))

LT(gj)
ej ∈ Rs

is homogeneous of degree a relative to G where xa = lcm(LM(gi), LM(gj)).

For example, consider the tuple

G = (y2 − x,xy − 1, −x2 + y)

of polynomials in Q[x, y] with GLex. Decompose

H = (x3y − xy2,x3 + y3,xy3 − x2y)

into a sum of homogeneous elements relative to G.

Find LFG(H) for the triples G and H above.

In general, show that if H ∈ Syz(G), then LFG(H) ∈ Syz(LT(G)).

––

For the triple G above, find a lifting of

H = (x4y2,x3y3,x2y4).
–

–––


